Search results for "Multiscale Approach"
showing 4 items of 4 documents
New insights into the use of rhizobia to mitigate soil N2O emissions
2022
Agriculture is a major anthropogenic source of the greenhouse gas N2O, which is also involved in stratospheric ozone depletion. While the use of rhizobial inoculants has already been reported as an emerging option for mitigating soil N2O emissions, this study presents an in situ abatement of 70% of soil N2O emission using the strain nosZ+ G49 vs. nosZ− USDA138 in association with soybean. Therefore, we consider that the choice of the inoculant strain of a leguminous crop should take into account the capacity of strains to reduce nitrous oxide in addition to their N fixation capacity. This study also clearly suggests that this mitigation option could be considered not only for soybean but al…
The Importance of Cerebellar Connectivity on Simulated Brain Dynamics
2020
The brain shows a complex multiscale organization that prevents a direct understanding of how structure, function and dynamics are correlated. To date, advances in neural modeling offer a unique opportunity for simulating global brain dynamics by embedding empirical data on different scales in a mathematical framework. The Virtual Brain (TVB) is an advanced data-driven model allowing to simulate brain dynamics starting from individual subjects' structural and functional connectivity obtained, for example, from magnetic resonance imaging (MRI). The use of TVB has been limited so far to cerebral connectivity but here, for the first time, we have introduced cerebellar nodes and interconnecting…
Multiscale Approach in Studying the Influence of Annealing Conditions on Conductivity of TiO2 Nanotubes
2015
Titanium oxide nanotubes (NTs) have attracted much attention during last decade due to their special characteristics such as one-dimensional highly ordered geometry with large surface area and good chemical and optical stability.
Predicting mechanical behaviour and damage kinetics of a 3D interlock composite materials by using a multiscale approach
2012
International audience; The present work aims to investigate the mechanical behaviour and the damage kinetics of a3D interlock woven fabric composite, especially used for natural gas tanks dedicated to thetransportation industry. On the one hand, we aim at predicting the macroscopic coefficients ofthe stiffness matrix by homogenization multiscale approach. For this, we identified a basicunit cell which represents well the composite microstructure. On the other hand, damagemechanisms are analyzed: optical microscopy examinations on damaged specimens revealedseveral types of defects. We used the same multi-scale approach to assess the impact of thesedefects on the decrease of stiffness.